Computation of eigenvalues in proportionally damped viscoelastic structures based on the fixed-point iteration

نویسندگان

  • Mario Lázaro
  • José L. Pérez-Aparicio
  • Marcelo Epstein
چکیده

Linear viscoelastic structures are characterized by dissipative forces that depend on the history of the velocity response via hereditary damping functions. The free motion equation leads to a nonlinear eigenvalue problem characterized by a frequency–dependent damping matrix. In the present paper, a novel and efficient numerical method for the computation of the eigenvalues of linear and proportional or lightly non– proportional viscoelastic structures is developed. The central idea is the construction of two complex–valued functions of a complex variable, whose fixed points are precisely the eigenvalues. This important property allows the use of these functions in a fixed–point iterative scheme. With help of some results in Fixed Point Theory, necessary conditions for global and local convergence are provided. It is demonstrated that the speed of convergence is linear and directly depends on the level of induced damping. In addition, under certain conditions the recursive method can also be used for the calculation of non–viscous real eigenvalues. In order to validate the mathematical results, two numerical examples are analyzed, one for single degree–of–freedom systems and another for multiple ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells

Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

New three-step iteration process and fixed point approximation in Banach spaces

‎In this paper we propose a new iteration process‎, ‎called the $K^{ast }$ iteration process‎, ‎for approximation of fixed‎ ‎points‎. ‎We show that our iteration process is faster than the existing well-known iteration processes using numerical examples‎. ‎Stability of the $K^{ast‎}‎$ iteration process is also discussed‎. ‎Finally we prove some weak and strong convergence theorems for Suzuki ge...

متن کامل

Solving time-fractional chemical engineering equations by modified variational iteration method as fixed point iteration method

The variational iteration method(VIM) was extended to find approximate solutions of fractional chemical engineering equations. The Lagrange multipliers of the VIM were not identified explicitly. In this paper we improve the VIM by using concept of fixed point iteration method. Then this method was implemented for solving system of the time fractional chemical engineering equations. The ob...

متن کامل

Iterative scheme based on boundary point method for common fixed‎ ‎point of strongly nonexpansive sequences

Let $C$ be a nonempty closed convex subset of a real Hilbert space $H$. Let ${S_n}$ and ${T_n}$ be sequences of nonexpansive self-mappings of $C$, where one of them is a strongly nonexpansive sequence. K. Aoyama and Y. Kimura introduced the iteration process $x_{n+1}=beta_nx_n+(1-beta_n)S_n(alpha_nu+(1-alpha_n)T_nx_n)$ for finding the common fixed point of ${S_n}$ and ${T_n}$, where $uin C$ is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2012